If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+124x+9=0
a = 4; b = 124; c = +9;
Δ = b2-4ac
Δ = 1242-4·4·9
Δ = 15232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15232}=\sqrt{64*238}=\sqrt{64}*\sqrt{238}=8\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(124)-8\sqrt{238}}{2*4}=\frac{-124-8\sqrt{238}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(124)+8\sqrt{238}}{2*4}=\frac{-124+8\sqrt{238}}{8} $
| 2x+7-3x=2x+1 | | 0x+3=5 | | 7x^2-4x-75=0 | | |x-2|=12 | | x2-4x-4x=-4-3 | | 4m+3=-2 | | -3b=-45 | | 3(b-2)+5=7+3(2-5)-38 | | 0.15x+9=0.45 | | 98=2(n-6) | | 3(n+8)=72 | | 180-(360÷x)=10 | | (3^x)(4^(x+2))=8 | | 7x+10x(45-x)=420 | | 3x+240=4x-80 | | 25^1/2+3x=3125 | | 4(7x+5)+8(6x-7)=-13 | | 6(m-1=24 | | (x-2)180/x=140 | | (x²+2x+1)=25 | | .15x=450 | | 2÷(8-x)=1,41÷x | | 2÷8-x=1.41÷x | | 2x=1.41(8-x) | | 18-8k=45 | | 5x+8+2x-42=1 | | 7x-x=8x | | 81/100=x/30 | | x/30=81/100 | | 5/6x-3/4+7/16=0 | | -9x(-x+4)=18 | | 10x-24-3=38+5x-12 |